
Abstract data types 4
Summary: Abstract data types and the implicit data types used for their realization
have already been generally discussed in Section 1.2. This chapter first deals with
the abstract data types stack, queue, and priority_queue which are provided
as template classes by the STL. Subsequently, the sorted associative containers set,
map, multiset, and multimap are considered.

A template class of the kind presented here is also called a container adaptor because
it adapts an interface. This means that adaptors insert an interface level with changed
functionality between the user and the implicit data types. Thus, when you use a
stack object, you work via stack methods with the underlying container which can,
for example, be a vector.

The container used as an implicit data type is contained as an object in the class of
an abstract data type (aggregation). The abstract data type makes use of the methods
of the container. This principle is called delegation.

4.1 Stack
A stack is a container which allows insertion, retrieving, and deletion only at one
end. Objects inserted first are removed last. As an implicit data type, all sequential
container classes are allowed which support the operations back(), push_back(),
and pop_back(), as shown in the following excerpt:

namespace std {

template <class T,

class Container = deque<T> > // default
class stack {

public:

typedef typename Container::value_type value_type;

typedef typename Container::size_type size_type;

typedef typename Container container_type;

protected:

Container c;



70 ABSTRACT DATA TYPES

public:

explicit stack(const Container& = Container());

bool empty() const { return c.empty();}

size_type size() const { return c.size(); }

value_type& top() { return c.back(); }

const value_type& top() const { return c.back(); }

void push(const value_type& x) { c.push_back(x); }

void pop() { c.pop_back(); }

};

template <class T, class Container>

bool operator==(const stack<T,Container>& x,

const stack<T,Container>& y) {

return x.c == y.c;

}

template <class T, class Container>

bool operator<(const stack<T,Container>& x,

const stack<T,Container>& y) {

return x.c < y.c;

}

There are also the relational operators !=, <= etc. In particular, you can also
choose vector or list instead of the standard value deque. Thus, a stack<int,
vector<int> > is a stack for int values implemented by means of a vector. An
example of the application of stacks follows in Section 4.2.

4.2 Queue
A queue allows you to insert objects at one end and to remove them from the opposite
end. The objects at both ends of the queue can be read without being removed.
Both list and deque are suitable data types for implementation. The class queue
provides the following interface:

template<class T, class Container = deque<T> >

class queue {

public:

explicit queue(const Container& = Container());

typedef typename Container::value_type value_type;

typedef typename Container::size_type size_type;

typedef Container container_type;

bool empty() const;

size_type size() const;

value_type& front(); // read value in front
const value_type& front() const; // read value in front



QUEUE 71

value_type& back(); // read value at end
const value_type& back() const; // read value at end
void push(const value_type& x); // append x
void pop(); // delete first element

// private/protected parts omitted
};

Of course, the underlying implementation is very similar to that of the stack. The
operators == and < exist as well. queue::value_type and queue::size_type

are both derived from the type (deque or list) used for the container. The following
short program is intended to show the practical application of queue and stack as
simply as possible. More complicated problems will follow later.

// k4/div_adt.cpp
#include<stack>

#include<queue>

#include<deque>

#include<list>

#include<vector>

#include<iostream>

int main() {

std::queue<int, std::list<int> > aQueue;

int numbers[] = {1, 5, 6, 0, 9, 1, 8, 7, 2};

const int count = sizeof(numbers)/sizeof(int);

std::cout << "Put numbers into the queue:" << std::endl;

for(int i = 0; i < count; ++i) {

std::cout.width(6); std::cout << numbers[i];

aQueue.push(numbers[i]);

}

std::stack<int> aStack;

std::cout << "\n\n Read numbers from the queue (same "

"order)\n and put them into the stack:"

<< std::endl;

while(!aQueue.empty()) {

int Z = aQueue.front(); // read value
std::cout.width(6); std::cout << Z;

aQueue.pop(); // delete value
aStack.push(Z);

}

// ... (to be continued)

This little program puts a sequence of int numbers into a queue, reads them back
out, and puts them on a stack. The stack is built with a deque (default), whereas the
queue uses a list (list).



72 ABSTRACT DATA TYPES

4.3 Priority queue
A priority queue always returns the element with the highest priority. The priority
criterion must be specified when creating the queue. In the simplest case, it is the
greatest (or smallest) number in the queue. The criterion is characterized by a class
of suitable function objects for comparison (see Section 1.6.3).

In a priority queue you could, for example, store pairs consisting of references
to print jobs and associated priorities. For simplicity, only int elements are used
in the example. The continuation of the program of the previous section shows the
application, in which the priority queue internally uses a vector and employs the
standard comparison type greater:

// continued from Section 4.2

std::priority_queue<int, std::vector<int>,

std::greater<int> > aPrioQ;

// greater: small elements first (= high priority)
// less: large elements first

std::cout << "\n\n Read numbers from the stack "

"(reverse order!)\n"

" and put them into the priority queue:"

<< std::endl;

while(!aStack.empty()) {

int Z = aStack.top(); // read value
std::cout.width(6); std::cout << Z; // display
aStack.pop(); // delete value
aPrioQ.push(Z);

}

std::cout << "\n\n Read numbers from the priority "

" queue (sorted order!)" << std::endl;

while(!aPrioQ.empty()) {

int Z = aPrioQ.top(); // read value
std::cout.width(6); std::cout << Z; // display
aPrioQ.pop(); // delete value

}

}

Because of the priority queue’s internal representation as a binary heap for effi-
ciency reasons (see Section 5.7), only implicit data types with random access iter-
ators are suited, for example deque and vector. priority_queue provides the
following interfaces, where Container and Compare denote the data types for the
implicit container and the comparison type:

template<class T, class Container = vector<T>,

class Compare = less<Container::value_type> >



SORTED ASSOCIATIVE CONTAINERS 73

class priority_queue {

public:

typedef typename Container::value_type value_type;

typedef typename Container::size_type size_type;

typedef Container container_type;

bool empty() const;

size_type size() const;

const value_type& top() const;

void push(const value_type& x);

void pop();

The meaning of the above methods corresponds to that of stack and queue; the
constructor, however, looks slightly different:

explicit priority_queue(const Compare& x = Compare(),

const Container& = Container());

The constructor requires a Compare object. If none is passed, an object generated
by the default constructor of the Compare class is passed. In the sample program
above, this is greater<int>().

priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare(),

const Container& = Container());

This constructor takes input iterators as the argument, in order to create a priority
queue for a large range in one go. This is more efficient than a series of push()
operations. In our sample program on page 72, a further priority queue could be
created by means of the instruction

priority_queue<int, vector<int>, greater<int> >

anOtherPrioQ(numbers, numbers+count);

and at the same time be initialized with the whole number array. The name of the
array numbers is to be taken as a constant pointer, as is usual in C++.

Operators == and < do not exist because the comparison does not seem reason-
able and would be expensive in terms of run time behavior. In Section 10.2, a priority
queue is used to accelerate sorting processes on sequential files.

4.4 Sorted associative containers
An associative container allows fast access to data by means of a key which need not
coincide with the data. For example, the name and address of an employee could be
accessed via a personnel number used as a key. In sets and multisets, the data itself is
used as a key, whereas in maps and multimaps, key and data are different. The STL
provides four types of associative containers:

• set: The keys coincide with the data. There are no elements with the same key in
the set, that is, a key occurs either once or it does not occur at all.



74 ABSTRACT DATA TYPES

• multiset: The keys coincide with the data. There may be identical keys (ele-
ments) in the set, that is, a key can occur not at all, once, or any number of times.

• map: The keys do not coincide with the data. For example, the key could be a
number (personnel number) by means of which the data (address, salary, ...) can
be accessed. Keys can be any kind of objects. In a dictionary, for example, the
key could be an English word which is used to determine a foreign language word
(the data). map maps a set of keys to a set of associated data. The elements of
a map container are pairs of keys and data. They describe a binary relation, that
is, a relation between elements of two sets. The set of possible keys is called the
‘definition range’ of the map, the set of associated data is called the ‘value range.’
The map type is characterized by a unique map, because one key is associated
with exactly one datum. There are no identical keys, that is, a key either does not
occur at all or occurs only once.

• multimap: A multimap object has the properties described under map, with one
exception: there may be identical keys. This means that a key can occur not at all,
once or any number of times. Unambiguousness is therefore no longer given.

The STL containers store the keys sorted, although this is not required by the
actual task described in the above points. This is just an implementation detail that
allows you to store these containers in a very compact way as balanced binary trees
(red-black trees). Because of the sorting, access to the elements is very fast and the
tree grows only by the strictly required amount. An alternative, namely hashing,
requires an initial assignment of memory, but is even faster in accessing elements
(an average of O(1) with sufficient space instead of O(log N)).

This alternative was not incorporated into the STL, since after a certain date
all major modifications or extensions were no longer accepted in order not to jeop-
ardize the time scale for standardization of the programming language and its li-
brary. Because of their efficiency, hashed associative containers will be described in
Chapter 7.

4.4.1 Set
A set is a collection of distinguishable objects with common properties. N =
{0, 1, 2, 3, ...}, for example, denotes the set of natural numbers. Since the elements
are distinguishable, there can be no two identical elements in one set. All sets used
in computer programs are finite.

The class set supports mapping of sets in the computer. Although the elements
of a set in the mathematical sense are not subject to any order, they are nevertheless
internally represented in ordered form to facilitate access. The ordering criterion is
specified at the creation of a set. If it is not specified, less<T> is used by default.

For sets, the STL provides the class template set. With regard to the typical
operations with sets, such as intersection and union, set is subject to several restric-
tions which, however, are remedied by the extensions described in Chapter 6.



SORTED ASSOCIATIVE CONTAINERS 75

In addition to the data types specified in Table 3.1 and the methods in Table
3.2 and Section 3.2.1, a class set<Key, Compare> provides the public interface
described in Tables 4.1 to 4.3. Here, Key is the type of those elements that also
have the function of keys, and Compare is the type of the comparison object. In this
case, key_compare and value_compare are identical and are included only for
completeness. The difference occurs only later in Section 4.4.3 in the map class.

Data type Meaning
key_type Key

value_type Key

key_compare Compare. Standard: less<Key>
value_compare Compare. Standard: less<Key>

Table 4.1: Set data types.

Constructor Meaning
set() Default constructor: creates an empty container, with

Compare() used as comparison object.
set(c) Constructor: creates an empty container, with c used as com-

parison object.
set(i, j, c) Constructor: creates an empty container, into which subse-

quently the elements of the iterator range [i, j) are in-
serted by means of the comparison object c. The cost is
N log N with N as the number of inserted elements.

set(i, j) As set(i, j, c), but with Compare() as comparison ob-
ject.

Table 4.2: Set constructors.

The right-hand column of Table 4.3 indicates the complexity, where N refers
to the number of inserted, deleted, or counted elements. G stands for the current
size of the container returned by size(). The meaning of some methods can
only be fully understood in connection with multisets (see below). For example,
equal_range(), which for a set object a is equivalent to the call make_pair(
a.lower_bound(k), a.upper_bound(k)), supplies only a pair of directly con-
secutive iterators when applied to a set (if k exists).

The count() method can yield only 0 or 1. It is included only for compatibility
with multisets (multiset). All methods that return an iterator or a pair of iterators
return constant iterators for constant sets. Methods for constant sets are not specially
listed in Table 4.3.

The following example shows the application of a set of type set. More com-
plex operations, such as union and intersection will be discussed in Section 5.6 and
Chapter 6.



76 ABSTRACT DATA TYPES

Return type method Meaning Complexity
key_compare

key_comp()
Returns a copy of the comparison
object used for the construction of
the set.

1

value_compare
value_comp()

As key_comp() (difference only in
map).

1

pair<iterator,bool>
insert(t)

Inserts the element t, provided that
an element with the correspond-
ing key does not yet exist. The
bool component indicates whether
the insertion has taken place; the
iterator component points to the
inserted element or to the element
with the same key as t.

log G

iterator insert(p,
t)

As insert(t), with the iterator p
being a hint as to where the search
for inserting should begin. The re-
turned iterator points to the inserted
element or the element with the same
key as t.

log G

void insert(i,j) Inserts the elements of the iterator
range [i, j).

N log(G +
N)

size_type erase(k) Deletes all elements with a key equal
to k. The number of deleted elements
is returned.

N + log G

void erase(q) Deletes the element pointed to by the
iterator q.

1

void erase(p, q) Deletes all elements in the iterator
range [p, q).

N + log G

void clear() Deletes all elements. N + log G

iterator find(k) Returns an iterator to an element
with the key k, provided it exists.
Otherwise, end() is returned.

log G

size_type count(k) Returns the number of elements with
key k.

G + log G

iterator
lower_bound(k)

Returns an iterator to the first ele-
ment whose key is not less than k.

log G

iterator
upper_bound(k)

Returns an iterator to the first ele-
ment whose key is greater than k.

log G

pair<iterator,
iterator>

equal_range(k)

Returns a pair of iterators between
which the keys are equal k.

log G

Table 4.3: Set methods.



SORTED ASSOCIATIVE CONTAINERS 77

// k4/setm.cpp Example for sets
#include<set>

#include<showseq.h>

int main() {

std::set<int> Set; // comparison object: less<int>()

for(int i = 0; i < 10; ++i) Set.insert(i);

for(int i = 0; i < 10; ++i) Set.insert(i); // no effect
br_stl::showSequence(Set); // 0 1 2 3 4 5 6 7 8 9

/*The display shows that the elements of the set really occur exactly once. In the next
part of the program, elements are deleted. In the first variation, first the element is
sought in order to delete it with the found iterator. In the second variation, deletion
is carried out via the specified key.

*/

std::cout << "Deletion by iterator\n"

"Delete which element? (0..9)" ;

int i;

std::cin >> i;

std::set<int>::const_iterator iter = Set.find(i);

if(iter == Set.end())

std::cout << i << " not found!\n";

else {

std::cout << "The element " << i

<< " exists" << Set.count(i) // 1
<< " times." << std::endl;

Set.erase(iter);

std::cout << i << " deleted!\n";

std::cout << "The element " << i

<< " exists" << Set.count(i) // 0
<< " times." << std::endl;

}

br_stl::showSequence(Set);

/*The count() method yields either 0 or 1. Thus, it is an indicator as to whether an
element is present in the set.

*/

std::cout << "Deletion by value\n"

"Delete which element? (0..9)" ;

std::cin >> i;

int Count = Set.erase(i);

if(Count == 0)

std::cout << i << " not found!\n";

br_stl::showSequence(Set);



78 ABSTRACT DATA TYPES

/*A further set NumberSet is not initialized with a loop, but by specifying the range
to be inserted in the constructor. Suitable iterators for int values are pointers of
int* type. The name of a C array can be interpreted as a constant pointer to the
beginning of the array. When the number of array elements is added to this pointer,
the result is a pointer that points to the position after the last array element. Both
pointers can be used as iterators for initialization of a set:

*/

std::cout << "call constructor with iterator range\n";

// 2 and 1 twice!
int Array[] = { 1, 2, 2, 3, 4, 9, 13, 1, 0, 5};

Count = sizeof(Array)/sizeof(Array[0]);

std::set<int> NumberSet(Array, Array + Count);

br_stl::showSequence(NumberSet); // 0 1 2 3 4 5 9 13
}

In this example it can also be seen that the occurring elements are displayed only
once although duplicates exist in the original array.

4.4.2 Multiset
A multiset behaves like a set with the exception that not just one, but arbitrarily many
identical elements may be present. Table 4.4 shows insert() as the only method
which behaves differently from its counterpart in the set class and has a different
return type.

Return type method Meaning Complexity
iterator insert(t) Inserts the element t independently

of whether an element with the
same key already exists. The iterator
points to the newly inserted element.

log G

Table 4.4: Multiset: difference from set.

4.4.3 Map
Exactly like a set, a map is an associative container, in which, however, unlike set,
keys and associated data are different. Here, the difference between key_compare

and value_compare mentioned on page 75 takes effect. In the declaration of a set
container, the types of key and possibly comparison objects must be specified; in
map, the data type is needed as well:

map<int, string, greater<int> > aMap;



SORTED ASSOCIATIVE CONTAINERS 79

The definition is a mapping of int numbers onto string objects, with the
numbers internally sorted in descending order. As with set, sorting is not a prop-
erty of the map, but of internal storage. The type of the comparison object can
be left out: map<int, string> aMap is then the same as map<int, string,

less<int> > aMap.
The elements of a map container are pairs: the type value_type is identical

to key_type in set or multiset, whereas map::value_type is equivalent to
pair< Key, T>, with Key being the type of key and T the type of data.

The map class essentially provides constructors with the same parameters and
methods with the same names and parameters as the set class. The meaning is
equivalent; it is sufficient to remember that pairs are stored instead of single values.
There are only two exceptions. The method

value_compare value_comp();

differs in its meaning from the one in set. It returns a function object which can
be used for comparison of objects of type value_type (that is, pairs). This func-
tion object compares two pairs on the basis of their keys and the comparison object
used for the construction of the map. The class value_compare is declared inside
the class map. For example, let us assume two pairs and a map with the following
definitions:

pair<int, string> p(9921, "algorithms"),

q(2726, "data structures");

Now, if there is a map M which during construction was connected to the comparison
object CK for the comparison of keys, then the call

bool x = M.value_comp()(p,q);

is identical to

bool x = CK(p.first, q.first);

that is, the comparison of the keys stored in first. The second exception is the
index operator provided in map, which also allows you to access the data via the key
as an index. The key must not necessarily be a number:

// int key
cout << AddressMap[6]; // output of a name

// string key
cout << DictionaryMap["hello"]; // ‘Hallo’

If during access the key does not yet exist, it is included into the map, insert-
ing an object generated with the default constructor in place of the data! Therefore,
before reading with the index operator, check whether the required element exists. tip
Otherwise, the map will inadvertently be filled with objects generated by the default
constructor.

In the following example, some names are associated personnel numbers of the
long type. These numbers are so big that it would not make sense to employ them



80 ABSTRACT DATA TYPES

as an index of an array. After entering a personnel number, the program outputs the
corresponding name.

In order to make the program more readable, the data type for mapping names to
numbers and the data type for a value pair are renamed by means of typedef.

// k4/map1.cpp: Example for map
#include<map>

#include<string>

#include<iostream>

using namespace std;

// two typedefs for abbreviations
// comparison object: less<long>()
typedef std::map<long, std::string> MapType;

typedef MapType::value_type ValuePair;

int main() {

MapType aMap;

aMap.insert(ValuePair(836361136, "Andrew"));

aMap.insert(ValuePair(274635328, "Berni"));

aMap.insert(ValuePair(260736622, "John"));

aMap.insert(ValuePair(720002287, "Karen"));

aMap.insert(ValuePair(138373498, "Thomas"));

aMap.insert(ValuePair(135353630, "William"));

// insertion of Xaviera is not executed, because the key already exists.
aMap.insert(ValuePair(720002287, "Xaviera"));

/*Owing to the underlying implementation, the output of the names is sorted by
numbers:

*/

std::cout << "Output:\n";

MapType::const_iterator iter = aMap.begin();

while(iter != aMap.end()) {

std::cout << (*iter).first << ’:’ // number
<< (*iter).second // name
<< std::endl;

++iter;

}

std::cout << "Output of the name after entering"

" the number\n"

<< "Number: ";

long Number;

std::cin >> Number;

iter = aMap.find(Number); // O(log N), see text



SORTED ASSOCIATIVE CONTAINERS 81

if(iter != aMap.end())

std::cout << (*iter).second // O(1)

<< ’ ’

<< Map[Number] // O(log N)

<< std:: endl;

elsestd:: cout << "Not found!" << std::endl;

}

The name is sought by way of the number. This process is of complexity
O(log N), where N is the number of entries. If the entry is found, it can be output
directly by dereferencing the iterator.

Another way to access a map element is via the index operator. Here, it can be
clearly seen that the index can be an arbitrarily large number which has nothing to
do with the number of actual entries – this is completely different from the usual
array.

The access Map[Number] has the same complexity as find(), and we could
do without find() in the above example if we could be sure that only numbers that
actually exist are entered.

If the index operator is called with a non-existing number, it stores this number in
the map and uses the default constructor for generating the data (see the exercises).
This ensures that the index operator never returns an invalid reference. In our case, an
empty string would be entered. In order to prevent this, find() is called beforehand.

Exercises

4.1 For a map m, data of type T and a key k, the call m[k] is semantically equivalent
to

(*((m.insert(make_pair(k, T()))).first)).second

because an entry is made for a non-existing key. Analyze the expression, in both the
case when the key k is contained in m, and when it is not.

4.2 Is there a difference if value_type is written instead of make_pair in the
previous exercise?

4.4.4 Multimap
multimap differs from map in the same way as multiset differs from set:
multiple entries of elements with identical keys are possible, for example, the
name Xaviera in the sample program of the previous section. Correspondingly, the
function insert(value_type) does not return a pair pair<iterator, bool>,
but only an iterator which points to the newly inserted element (compare with set/
multiset).


